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FREE-SURFACE BOUNDARY LAYER AND 

THE ORIGIN OF BOW VORTICES 

I.  INTRODUCTION 

The requirements of vanishing tangential stresses at a curved free 

surface imply a nonzero vorticity which is convected and diffused into the 

fluid. At sufficiently high Reynolds numbers, the vorticity is confined to a 

thin boundary layer along the free surface. The oscillatory boundary layer at 

the free surface of travelling and stationary water waves has been considered 

by Longuet-Higgins (1953, 1960), particularly to determine its effect on the 

mass-transport velocity in the fluid outside the boundary layer. Batchelor 

(1967) has also described the origin of the free-surface boundary layer and 

presented two applications, namely the drag of a spherical gas bubble rising 

through a liquid and the attenuation of gravity waves due to viscous effects 

at the free surface. A free-surface boundary layer is also present ahead of 

an object in motion due to the surface elevation above the undisturbed level 

and the associated curvature. 

The possible importance of the free-surface boundary layer ahead of a 

body moving at the surface of a liquid, e.g., at the bow of a ship, was 

pointed out by Landweber and Patel (1979). A number of flow-visualization 

experiments have shown the existence of vortices under the free surface at the 

bow. Such vortices were first reported by Suzuki (1975) and Honji (1976) in 

two-dimensional flow ahead of a semi-submerged circular cylinder. Kayo et al. 

(1982) have repeated these experiments and confirmed the occurrence of these 

vortices.  In three-dimensional flow, the experiments of Kayo and Takekuma 

(1981) and Shahshahan (1982) with towed ship models, those of Kayo et al. 

(1982) with towed vertical cylinders, and some ongoing observations made by 

the present authors with fixed cylinders in a hydraulic flume show horseshoe 

vortices forming ahead of the bow just below the free surface. Although bow 

vortices are also discussed in several recent papers (see Maruo, 1983; Mori, 

1984; Takekuma and Eggers, 1984), the precise mechanism responsible for their 

formation, and the role they play in the breaking of bow waves, is not yet 

understood. 



The two-dimensional free-surface boundary layer is the subject of the 

present paper. The necessary conditions at a curved free surface of a viscous 

fluid in motion are examined and it is shown that surface tension plays a 

critical role in determining the real flow ahead of an obstacle. In 

particular, the boundary conditions and the equation of continuity lead to a 

criterion for the occurrence of a stagnation point at the free surface, which 

may be identified with the existence of a vortex further downstream. The 

theory is in approximate agreement with the experimental observations in two- 

dimensional flow noted above, and may explain the origin of the bow vortices. 

The equations of the free-surface boundary layer are then derived and an 

approximate integral method of solution is presented. This leads to an 

estimate of the momentum thickness of the boundary layer. 

II.  NAVIER-STOKES EQUATIONS AND BOUNDARY CONDITIONS 

Consider a two-dimensional obstacle in a uniform stream of 

velocity U , as shown in figure 1. The vertical distance above the 

undisturbed level far upstream is denoted by y and the elevation of the free 

surface above this level is c. It is convenient to choose a curvilinear 

orthogonal coordinate system (s,n) in which s is along the free surface and n 

is normal to it. If the corresponding velocity components are denoted by u 

and v, then for laminar flow, the equation of continuity and the Navier-Stokes 

equations in the (s,n) directions may be written, respectively, 

T^lFs + Jn + K12v ~ ° (1) 
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where p is density, v is kinematic viscosity, g is acceleration due to 

gravity, p is pressure, 

hx = 1 + <n (4) 

(5) 
3h 

_ 1 1 _   < 
K12 = h 3n " 1 + <n 

and K is the curvature of the free surface. 

The  normal  and  tangential  stresses  in  the  fluid, x  and 
nn 

T , respectively, are 

'sn"» <hlln(^)+\lil <7> 

where u (= pv) is the coefficient of viscosity.   The only component of 

vorticity is 

" " "RJ i|* - In <M) <8> 

At the free surface, we have 

VQ= 0 (9) 

and since the tangential stress vanishes, equation (7) gives 

<!n->o=-o <10) 



where the subscript o denotes conditions at the free surface. Using equations 

(9) and (10) in equation (8), we obtain the expression for the vorticity at 

the free surface, 

%--2<uo (11) 

Thus, if the flow in the interior of the fluid is assumed to be irrotational, 

there exists a boundary layer across which the vorticity reduces to zero. 

Note that such a boundary layer is absent if the free surface is flat. 

If surface tension is neglected, the normal stresses at the free surface 

must be constant and equal to the ambient pressure, which may be taken to be 

zero. Equation (6) then yields 

Oc • ° 

If this and equation (9) are used in the continuity equation (1), we obtain 

the rather surprising result 

(—)     =  0 ^3s'o   U 

i.e.  u = constant = U 
o °° 

Since the velocity at the free surface in inviscid flow decreases and vanishes 

at the intersection with the obstacle, or equivalently, since the velocity 

outside the boundary layer, u. say, must decrease as the obstacle is 
0 

approached, the above result is physically unrealistic and we conclude that 

the condition of zero or constant normal stress at the free surface cannot be 

satisfied. In other words, the influence of surface tension cannot be 

ignored. 

Denoting the surface tension by o, the balance of normal stress across 

the free surface requires that 

- pa + OK = - p0 + 2y ( f£)0 (12) 



where pa is the (zero) ambient pressure above the free surface and p0 is the 

pressure in the liquid just at the free surface. Thus, 

/3Vx   ie a    a o n <,* 
Wo = TV ~      2 v (13) 

Substitution of equations (9) and (13) into the continuity equation (1) now 

yields 

Wo= - TV +    2 a    = • 7T TTs (arctan 5X) + —rr (14) 

where r = ijl is the slope of the free surface. If, as a first approximation, 

we assume that p0 = pa, i.e. the surface tension is balanced by the viscous 

stresses rather than a jump in pressure, equation (14) can be integrated to 

obtain 

u„ = U - -7T- arctan r (15) 

The distribution of vorticity at the free surface is then given by equations 

(11) and (15) as 

<*>~= 2 <  u = - 2 K  {U- %—  arctan r ) (16) 

Equation (15) shows that the velocity along the free surface decreases as 

x, increases. The previous result of constant velocity in the absence of 

surface tension is recovered when a = 0. It is quite surprising that, with 

the above approximation, the velocity and vorticity at the free surface can be 

predicted solely from kinematics (equations 1 and 9) and the stress conditions 

(equations 10 and 12) at the surface without recourse to the dynamical 

equations (2) and (3). Even more surprising is the fact that equation (15) 

embodies a SEPARATION CRITERION for the free-surface boundary layer, since uQ 

= 0 indicates a stagnation point on the free surface. Thus, for separation 

2uU 
c   = tan (-—) x 

sep 

= tan (||) ' (17) 



plA pU^L 
where W = ——   and Re = —— are  the  Weber  and  Reynolds  numbers, 

respectively, based on some characteristic length L.  Since x,    and x,    depend 

upon the Froude number, F = U^/ /gU say, equation (17) represents a separation 

criterion in terms of the three basic nondimensional parameters: W, Re and F. 

III. SEPARATION AT THE FREE SURFACE AND BOW VORTICES 

In order to determine if equation (17) indeed represents a plausible 

result, we seek experimental confirmation. Consider the two-dimensional flow 

ahead of a semi-submerged circular cylinder of radius a with its axis 

horizontal and perpendicular to a stream of velocity U in the positive x- 
OB 

direction, as shown in figure 2. Alternatively, the cylinder moves with 

velocity U  in the negative x-direction in a liquid at rest.  The latter 
00 

corresponds to the arrangement in the experiments of Suzuki (1975), Honji 

(1976) and Kayo et al. (1982). As mentioned in the Introduction, a vortex 

system was observed ahead of the cylinder as depicted in figure 2. Tests with 

different velocities indicated a wide variation in the length 0a of the 

vortex. However, the three sets of data appear to be in some conflict with 

regard to the influence of the cylinder speed on the length of the vortex. 

Although Suzuki appears to be first to observe the vortices, his measurements 

are related to the breaking of bow waves ahead of the cylinder rather than the 

size of the bow vortex. They are therefore not suitable for comparison with 

the present theory. The measurements of Honji, which are reproduced in figure 

3, show an increase in 6 with increasing Reynolds and Froude numbers. On the 

other hand, the observations of Kayo et al., shown in figure 4, indicate very 

large and scattered values of 6 at the lowest velocities in the tests. With 

increasing velocity, e appears to reach a minimum and show a moderate increase 

thereafter. Honji also showed that the size of the vortex decreased when the 

surface tension was reduced by adding detergents to the water. Similar 

observations were also made by Kayo et al. but no quantitative information was 

obtained for the case of the horizontal cylinder considered here. 

If we identify the most upstream point S of the vortex (figure 2) with 

the free-surface stagnation point predicted by the present theory, then it is 

possible to calculate the distance 0a from equation (17), provided the slope 



of the free surfaces is known, or assumed, ahead of the cylinder. The 

determination of the free-surface elevation is of course the classical problem 

of nonlinear ship-wave theory. 

III.l Evaluation of c from inviscid, irrotational-flow theory 

Consider a circular cylinder of radius a, half immersed in a uniform 

stream of velocity U in the positive direction of the x axis. Take the 

origin at the undisturbed water surface and the y-axis positive upwards. The 

irrotational-flow velocity components in the x- and y-directions are U and V, 

respectively, and the free-surface elevation due to the presence of the 

cylinder is y -  c(x). 

The condition that the free surface is a streamline gives 

C = V/U (18) 
x 

while the Bernoulli equation for steady, irrotational flow and the zero- 

pressure condition at the free surface yields the implicit equation 

f(x,y) = U2 + V2 + 2gy - uf =0 

The kinematic boundary condition, Df/Dt = 0, then yields the exact, nonlinear 

boundary condition 

U(UUX + VVX) + V(UUy + VVy + g) = 0 (19) 

where the subscripts x, y denote derivatives. From the Cauchy-Riemann 

equations 

Ux = - Vy,   Uy = Vx (20) 

equation (19) becomes 

V2UX . v(2UUy + g) - U2UX = 0 

which can be rewritten in the nondimensional form 



V2UX - V(2UUy + 1/(2F
2)) - U2UX =0 (21) 

where (U,V) and (x,y) are scaled with U and a, respectively, and the Froude 
oo 

number F is defined by 

U 
(22) 

/"Zga 

Combining equations (18) and (21), we obtain 

- 4F2UUX 

?    =  ^ 2" 2" 2 1/2 ?— (23) 
[(l+4ruuj  +  (4rUU¥)   y'     +  1 + 4ruUw y x y 

which   represents   the   free-surface   slope   upstream   of   the   cylinder.      Since, 

however,   the   velocity   field   and   its   derivatives   are  difficult   to   determine, 

especially close to the body,  their values from the double-body approximation, 

i .e., 

2 
 2JL  w 2 x ,y_ (?  . 
,2      2,2  ' v      "   ,   2      2,2 [dq> 
(x + y  ) (x + y  ) 

evaluated at y = 0, are used. The reason for using the double-body solution 

rather than that from linear wave theory is that the former, which considers 

the effect of nonlinearity, gives a better approximation to the velocity field 

near the body. A graph of c, as a function of x/a is given in figure 5 for 

several values of the Froude number. 

Substitution of ^x from equation (23) with U, Ux and Uy at y = 0 from 

equation (24) into equation (17) gives 

_  8F2[(1 + 3)2- 1] . t  2M ,  , 

{(1 + 6)1U+ 64F4[(1 + 6) - 1]} + (1 + ST 

which can be solved numerically (or graphically using figure 5) for the 

location of the separation point 6a (defined in figure 2) for given values of 

F, Re and W. When the equation has several positive roots, the largest one is 

taken since separation, if present, would occur at the most upstream point. 



III.2 Comparison with experimental results 

Equation (25) has been solved for the conditions in the experiments of 

Honji (a = 0.05 m) and Kayo et al. (a = 0.10m). For Honji's data, the value 

of p (= 1.22 x 10~3 Ns/m?) was inferred from the quoted Reynolds numbers and 

velocities. For the data of Kayo et al., their quoted value of 0.913 x 10"3 

Ns/m? was used. In both cases, a is assumed to take the standard value of 

0.073 N/m. The results are shown by the dotted lines in figures 3 and 4. 

Note that, in both figures, the Reynolds and Froude numbers have been 

redefined consistently on the basis of the cylinder diameter, and the scales 

adjusted accordingly. 

The results for Honji's experiments, which were conducted at very low 

Reynolds and Froude numbers, indicate qualitative agreement between theory and 

observations, but the predicted delayed separation indicates smaller 

vortices. In the case of Kayo et al., the theory predicts the trends at the 

higher Reynolds and Froude numbers but the calculations now indicate earlier 

separation and larger vortices. The experimental results at very low Froude 

numbers show considerable scatter. At the. lowest Froude number in these 

tests, the experiments indicated very large separation distances which varied 

from test to test over a wide range. The authors noted that the largest 

distances were observed during the first experiment in the morning! The 

theory obviously does not predict this phenomenon. 

In summary, we note that the present simple theory appears to provide an 

explanation for the origin of the bow vortices.  The contradictions in the 

available experimental data indicate a need for more refined and controlled 

experiments.  On the other hand, the disagreement between the theory and 

existing data could be due to a number of factors which need to explored 

further.  Among these are (a) the influence of the assumption of no pressure 

jump across the free surface, (b) the uncertainty in the determination of the 

free-surface slope x,   , (c) the interaction between the bow vortex and the 
x 

shape of the free surface, (d) the occurrence of turbulent flow ahead of 

separation, and (e) the influence of surface contaminants in the experiments. 
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IV.  FREE-SURFACE BOUNDARY-LAYER EQUATIONS 

The results presented above have been obtained solely from an examination 

of the boundary conditions at the free surface and the assumption that there 

is no pressure jump across the free surface. In order to remove the latter 

restriction it is necessary to seek a solution of the equations of motion. 

The Navier-Stokes equations may be simplified to obtain the equations of 

the free-surface boundary layer. For this purpose, it is necessary to make an 

order-of-magnitude analysis utilizing the known boundary conditions. Let L be 

a characteristic length and 6 be the boundary-layer thickness. Then K* = <L, 

the nondimensional free-surface curvature which gives rise to the boundary 

layer, is controlled by the body geometry and the Froude number. 

The equation of continuity (1) and its derivative are 

^+hl^+<v=0 (26) 

2 2 

9~sTn~ +  hl ~2 +  2K  3H ~  ° <27> 
an 

Since h^ = 0(1), from the former, we have 

*n-°(S) -°(1>£ (28) 

and then 

v - 0 (£) U. (29) 

Also, equation (10) shows that 

Iff • 0 (K*) -£ (30) 

which gives 

3n L 

From equations (27) and (30), we obtain 
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a2v 

17 0(K*) -4 
l/ 

(32) 

Now, since the first convective term, together with the pressure and 

gravity terms in the momentum equation (2), yields the Bernoulli equation, we 

conclude that the leading viscous term must be of order (K6), i.e. 

?     *  u 
3 u - n rK Ll " 
9n 

0(<6) 
IT 
oo 

Hence 

f-o :-b 
• Re 

and equations (29) and (31) become 

(33) 

v - 0 £z) U. 
/Re 

.2 U 
9 u -- 0 (KVRe) -° 
an" L" 

Thus, we have the following results: 

(34) 

(35) 

u = 0  (1)  U. 

{g - 0  (K*)  ^ 

2 U 
1" = 0 (KVW) -£ 
an L 

v = 0  (—)  U 
/-is— °° /l*e 

IS-o(i)^ 

iv = 0  (K*) -^ 
an L 

(36) 

When the above orders of magnitude are introduced in the Navier-Stokes 

equations (1) - (3) and terms up to order (<6) are retained in each equation, 

we obtain the boundary-layer equations 

9u      9y_ 
3s + an 

»#*'JS*"««+w<E*»> 
2 

a u 
v — 2 

an 

(37) 

(38) 
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- ^2 - Irr (p + ay) • ° (3g) 

IV.1 Velocity Profile 

The known boundary conditions can also be used to determine some 

characteristics of the velocity distribution across the boundary layer. To 

the first order, the vorticity, from equation (8), is 

»:- - u - <u (40 

The condition of zero vorticity outside the boundary layer yields 

For positive <, equations (10) and (41) show that the velocity reaches a 

maximum within the boundary layer. 

A velocity profile which explicitly satisfies the boundary conditions 

(10) and (41) is the cubic 

u = uQ[l +K.-n + g-n +-|n] (42) 
6 

where 

B =-O^H2+K6JI = -2 (1 +a) (43) 

and a is a parameter which ensures compatibility with equation (2) at the free 

surface, i.e. 

2 p' 
a = aFiT (—2)0 = ^Tu~ Kuo + ^  + ~) 

0 3n        0 

where the primes denote derivatives with respect to s. The pressure p0 can be 

eliminated from the above using the normal-stress condition (12) and the 

equation of continuity (37) since 

p' = - OK*  - 2uu" (44) 
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Thus, 

• =^r^'o + ^' -ir- 2vuo) <45> 
0 

It should be noted that the combination (u u ' + gc') is small and therefore 

a is of order unity. 

From equation (42), the ratio of velocity at the edge of boundary 

layer, u.,  to that at the free surface, u ,  can be expressed in terms 
o o 

of a as 

u 

Jo 
6   3 + <6 (2+ot) • , . <5 MJ^.\ IAC\ 
IT = 3 + <6 ^ 1 + y (1+ot> (46) 

This indicates that a > - 1 for u > u . 
5        o 

IV.2   Momentum Integral Equations 

As a first step in the solution of the first-order boundary-layer 

equations (37)-(39), it is convenient to use the well-known integral method. 

Integration of the normal  momentum equation (39) yields 

(JT+ 9y)  '  (^ + 90  + /    <u2dn (47) 
o 

and therefore 

(£+ gy)« • (/+ g?) + / <u2dn (48) ^P 
T ^'6 - vp 

and 

k(£ + gy) =^(p^+gc) ^ /" ^2dn <49> 
0 

Now applying the Bernoulli equation at the edge of the boundary layer, we have 

1  u6 + %  + 9Y)6= ~2  uf (50) 

Substitution of this in equation (48) gives 
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(^+ 9()   =7 (Uj -  u6
2)   - /    <u2dn (51) 

and  from equation  (49) 

Is  (J + gy)  - -  ufiuj  - fc {/    <u2dn} (52) 
n 

Also, integration of the continuity equation (37) gives 

v - - /" |4 dn (53) 
0 9s 

Using equations (52) and (53), together with the boundary conditions of 

equations (10) and (41) in the viscous term, equation (38) can be integrated 

across the boundary layer from n = 0 to n = 6. After some rearrangement this 

yields the momentum-integral equation in the form 

4-J u(u - u )dn + u! / (u - u ) dn 
as 0       6      6  p.      0 

6        n 6 6  ? 

- / KU fr / udndn - 4- / / KU dndn + VK(U + u.) = 0       (54) 
0       0 On 

If the integrals in the above are evaluated using the velocity profile of 

equation (42), and terms of 0(<6) are neglected, we obtain the rather simple 

momentum integral equation 

di"{(g + 2) uo <6 } = 2vKUo <55) 

so that 

62 = l2^__r /S <u2ds (56) 
( 3 + a ) u K   -°° 

' 0 

Since a is given by equation (45), the above equation relates the boundary- 

layer thickness to the free-surface velocity, uQ, and shape, 5 and K. 

Another equation containing the above variables can be obtained from the 

normal-momentum equation (51) by substituting into it the velocity-profile 

relations (42) and (46), and using equations (44) and (45).  This leads to 
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Thus, equations (56) and (57) can be solved for 5 and u if the shape of 

the free surface (i.e., c and <) is prescribed. Note that surface tension is 

involved through the parameter a, and separation would be indicated by u0 = 0. 

It is also of interest to evaluate the displacement and momentum 

thicknesses of the boundary layer. If the flow were potential, the velocity 

would vary according to equation (40) with u = 0. This gives the potential- 

flow velocity (up) distribution 

up = u6{l+<(5-n)} (58) 

The integral thicknesses defined by 

* 1  6 

6 = U  /  (% " U)dn (59) 

6  0   H 

and 

9 = ±2   / u(u - u)dn (60) 
ut  0 
0 

can then be evaluated using equations (42), (46) and (58) to obtain 

<6* =| (3 + a) (<6)2 + 0(K6)3 (61) 

and 

<0 = I (3 + a) (<6)2 + 0(<5)3 (62) 

If equation (62) is combined with equation (56), we obtain the rather simple 

result 

8 =^ /S <u2ds (63) 
u3 -  ° 
0 

Since equation (63) does not contain the parameter a, it can be readily 

integrated with the condition 8 = 0 at s = - «, provided < and u0 
are known, 
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to obtain an estimate of the momentum thickness. As a first approximation, we 

use the inviscid, irrotational-flow analysis of Section III, i.e., equation 

(23) to determine < and equation (24) to obtain u0 (= U at y = 0). Figure 6 

shows the development of the momentum thickness at Re = 2 x 10^ for several 

Froude numbers. It is seen that e/a is of the order of 10"^ for distances of 

the order of one diameter upstream of the cylinder. The rapid growth 

of 6 ahead of the obstacle also indicates the increased proneness to 

separation. 

V. CONCLUDING REMARKS 

The flow ahead of a semi-submerged two-dimensional body moving through a 

viscous liquid is considered. Examination of the exact boundary conditions at 

the free surface has shown that surface tension plays a critical role in the 

determination of the free-surface velocity. The simplifying assumption of no 

pressure jump across the free surface then leads to the prediction of a 

stagnation point ahead of the body. This, in turn, explains the origin of 

vortices ahead of the body which have been observed in experiments. the 

predictions of the simple theory are in qualitative agreement with 

experimental results. Possible reasons for some discrepancies in the 

available experimental data, and the lack of more precise agreement with the 

theory, have been suggested. 

A detailed analysis of the equations of motion has been carried out to 

derive the equations of the free-surface boundary layer which contains the 

vorticity generated by the surface curvature. An integral method has been 

utilized to obtain two ordinary differential equations which relate the 

boundary-layer thickness and free-surface velocity to the curvature and slope 

of the free surface. These remove the restrictive assumption on the pressure 

jump and should lead to a more accurate prediction of the separation and 

vortex location. Solutions of these equations are in progress. 

Finally, we note that the analysis presented here is restricted to a two- 

dimensional flow. Nevertheless, it provides an explanation for the existence 

of vortices observed ahead of ship models. Also, it can be generalized for 

application to three-dimensional flows and, in combination with the kinematic 



17 

theories of vorticity amplification (Hawthorne, 1954; Lighthill, 1956), as 

suggested by Mori (1984) and Takekuma and Eggers (1984), may lead to a 

rational theory for the prediction of the necklace vortices ahead of ships. 

The complex interaction between the free-surface boundary layer, the bow 

vortices and the overall flow pattern around the bow is a subject for further 

research, as is the connection between the bow vortices and the breaking of 

bow waves. 
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